Research Article
Print
Research Article
Revised chronology of Trichoptera evolution*
expand article infoJessica A. Thomas, Paul B. Frandsen§, John C. Morse|
‡ Wellcome Sanger Genome Institute, Hinxton, United Kingdom
§ Brigham Young University, Provo, United States of America
| Clemson University, Clemson, United States of America
Open Access

Abstract

Based on a recalibrated BEAST diversification time analysis, we provide a revised chronology for the evolution of major lineages of Trichoptera. Fossil evidence indicates that caddisflies evolved at least by the Norian of Late Triassic (median age 222.6 Ma), compared with our estimate of at least 201.3 Ma. The ancestors of suborders Annulipalpia and Integripalpia also evolved as early as the Norian. Fossil evidence indicates that the ancestor of subterorder Phryganides lived at least by the Aalenian of Middle Jurassic (median age 173.6 Ma), compared with our estimate of at least 174.1 Ma.

Key Words

BEAST, caddisfly, fossil, Jurassic, phylogeny, Triassic

Introduction

Speculations about caddisfly relationships, based on morphological evidence and hand calculations have been published for many years (reviewed by Morse 1997). More recently, molecular techniques have accelerated this field of enquiry (Malm et al. 2013; Kjer et al. 2016; Thomas et al. 2020; Ge et al. 2022), motivated in part by increased appreciation of the ecosystem services provided by caddisflies, especially the use of these insects in assessment of water quality (e.g. Morse et al. (2019)). An understanding of these historical relationships is useful for interpreting evolution of known functional traits of caddisflies relevant for those ecosystem services and for proposing and testing hypotheses of yet-unknown traits. In addition to re-assessing the phylogenetic relationships of caddisfly families with six independent genes and > 10 000 nucleotides, sequencing 185 species representing 49 families, Thomas et al. (2020) also estimated the ages of the resulting clades using BEAST, concluding that “the most recent common ancestor of Trichoptera appeared in the Permian (ca. 275 Ma) in line with the first appearance of Trichoptera in the fossil record and that vicariance explains the distribution of most trichopteran taxa.”

The identity and dates of many fossils were re-assessed by Nicholson et al. (2015), providing updated information for recalibrating the age estimates by Thomas et al. (2020). We report here our revised estimates resulting from those recalibrations.

Methods

Ages of lineages were estimated by BEAST as described by Thomas et al. (2020), but recalibrated with fossil dates provided by Nicholson et al. (2015) and more recently available dates from The Paleobiology Database (2023). The phylogenetic estimate is based on the multiple sequence alignment from Thomas et al. (2020), except an unresolved node was manually constrained with findings using genomic data from Frandsen et al., in prep. Fossil families are included in the phylogeny, based on morphological evidence from Wichard and Müller (2022, for Palleptoceridae), references cited by Nicholson et al. (2015) and The Paleobiology Database (2023).

Results

Historical relationships of Trichoptera families with estimated minimum ages and fossil evidence are shown in Table 1 and Fig. 1. Thin lines indicate relationships only; their lengths are not supported by fossil evidence and are arbitrary and uninformative. Thick lines indicate the extent of fossil evidence (Nicholson et al. 2015). Solid lines show relationships according to Thomas et al. (2020) with a constraint from Frandsen et al., in prep. Broken horizontal lines show relationships based on morphological evidence only. Dots indicate re-estimates of minimum age. The re-estimated maximum age is at least 174.0 Ma for all Phryganides lineages and at least 201.3 Ma for all others.

Figure 1. 

Historical relationships of Trichoptera families with fossil evidence. Thin lines indicate relationships only; their lengths are not supported by fossil evidence and are arbitrary and uninformative; thick lines indicate the extent of fossil evidence (Nicholson et al. 2015; The Paleobiology Database 2023). Solid lines show relationships according to Thomas et al. (2020); broken horizontal lines show relationships based on morphological evidence only. Dots indicate re-estimates of minimum age (lower boundary). Maximum age [upper (soft maximum)] is 174.1 Ma for all Phryganides lineages, 201.3 Ma for all others. Numbers of living species, living subspecies and fossil species are from Morse (2023). Habitat(s), habit(s) and trophic relationship(s) are from Holzenthal et al. (2007) and Cummins et al. (2019). Current evidence for Integripalpia families shown within quotation marks (“Apataniidae,” “Goeridae,” “Helicophidae” and “Sericostomatidae”) indicates that they are paraphyletic.

Table 1.

Revised chronology of Trichoptera from BEAST based on updated fossil records (Nicholson et al. 2015; The Paleobiology Database 2023).

Taxa Divergence Family Lower boundary Upper (soft max) BEAST parameters Fossil taxa Date and Locality Information
1 Amphiesmenoptera Root: Lepidoptera/Trichoptera split >182.7 299 uniformPrior lower=”182.7” upper=”299.0” Liadotaulius maior From latest Lias (Earliest Jurassic) of Germany, Lias is Rhaetian to Toarcian in age (182.7–201.3 mya)
2 Lepidoptera Base of Lepidoptera >145 299 logNormalPrior mean=”35.0” stdev=”47.55” offset=”145.0” Appearance of Micropterigidae fossils Boundary of Jurassic - Cretaceous, Min: uppermost Cretaceous, 145 mya; Soft max: Pterygota of Late Carboniferous, 299 mya.
3 Trichoptera Base of Trichoptera >174.1 299 logNormalPrior mean=”22.98” stdev=”47.2” offset=”174.1” Modern trichopteran families (Rhyacophilidae, Philopotamidae) End of early to beginning of mid Jurassic, Min: upper mid Jurassic, 174.1 mya; Soft max: Pterygota of Late Carboniferous, 299 mya.
4 Annulipalpia (Philopotamoidea) Philopotamidae/Stenopsychidae (Stem) >174.1 252.5 logNormalPrior mean=”17.05” stdev=”25.0” offset=”174.1” Dolophilodes (Sortosella) shurabica Earliest Jurassic, from the Sai-Sagul locality (Kyrgyzstan, southern Fergana)
5 Annulipalpia (Philopotamoidea) Chimarra/Chimarrhodella Philopotamidae >13.82 201.3 logNormalPrior mean=”50.0” stdev=”52.8” offset=”13.82” Chimarra resinae, C. dommeli, C. weitschati, C. palaedominicana Dominican amber: Burdigalian/Langhian terrestrial amber in the Dominican Republic
6 Annulipalpia (Philopotamoidea) Wormaldia/Doloclanes Philopotamidae >93.5 201.3 logNormalPrior mean=”30.0” stdev=”29.75” offset=”93.5” Wormaldia cretacea Burmese amber, Early/Lower Cenomanian, Cretaceous of Myanmar.
7 Annulipalpia (Philopotamoidea) Philopotamus/Kisuara Philopotamidae >33.9 201.3 logNormalPrior mean=”40.0” stdev=”50.05” offset=”33.9” Philopotamus hamatus Baltic Amber, a Priabonian (Eocene) terrestrial amber in Russia
8 Annulipalpia (Philopotamoidea) Stenopsyche/Stenopsychodes Stenopsychidae >33.9 201.3 logNormalPrior mean=”40.0” stdev=”50.05” offset=”33.9” Stenopsyche imitata Baltic Amber, a Priabonian (Eocene) terrestrial amber in Russia
9 Annulipalpia (Hydropsychoidea) Diplectrona/Sciadorus/Smicrideinae Hydropsychidae >33.9 201.3 logNormalPrior mean=”40.0” stdev=”50.05” offset=”33.9” Diplectrona minima, D. ocularia Baltic Amber, a Priabonian (Eocene) terrestrial amber in Russia
10 Annulipalpia (Hydropsychoidea) Potamyia/Hydropsyche Hydropsychidae >46.2 201.3 logNormalPrior mean=”49.0” stdev=”40.4” offset=”46.2” Hydropsyche operta Chagrin Valley Green River Formation, Bridgerian (Eocene of USA), lacustrine - diatomaceous shale
11 Annulipalpia (Psychomyioidea) Ecnomus/Ecnomina Ecnomidae >125.45 201.3 logNormalPrior mean=”24.7” stdev=”19.5” offset=”125.45” Ecnomus cretacia Mdeyrij-Hammana, Casa Baabda (Azar coll), which is in a Barremian terrestrial amber in Lebanon.
12 Annulipalpia (Psychomyioidea) Antillopsyche/Pseudoneuroeclipsis Pseudoneureclipsidae >93.5 201.3 logNormalPrior mean=”29.65” stdev=”29.9” offset=”93.5” Amberclipsis elegans Burmese amber, ZMFK coll. Early/Lower Cenomanian Cretaceous of Myanmar.
13 Annulipalpia (Psychomyioidea) Lype/Psychomyia/Psychomyiella Psychomyiidae >113.0 201.3 logNormalPrior mean=”25.2” stdev=”24.05” offset=”113.0” Sententimiya wichardi Khasurty (Cretaceous of Russian Federation) Aptian lacustrine (Melnitsky and Ivanov 2020 in Kopylov et al. 2020)
14 Annulipalpia (Psychomyioidea) Phylocentropus/Dipseudopsis Dipseudopsidae >125.5 201.3 logNormalPrior mean=”21.1” stdev=”21.1” offset=”125.0” Phylocentropus succinolebanensis Lebanese amber, Hammana-Mdeyrij, Grès du Liban Formation, Late/Upper Barremian, Cretaceous
15 Annulipalpia (Psychomyioidea) Neureclipsis/Neucentropus Polycentropodidae >93.5 201.3 logNormalPrior mean=”29.65” stdev=”29.9” offset=”93.5” Neureclipsis burmanica Burmese amber (NIGP coll), which is in a Cenomanian terrestrial amber in Myanmar. Age range: 99.7 to 94.3 Ma
16 Annulipalpia (Psychomyioidea) Holocentropus/other Polycentropodidae Polycentropodidae >145.0 201.3 logNormalPrior mean=”15.6” stdev=”15.55” offset=”145.0” Polylongaevus eskovi Kempendyay River (Yakutiya) Khaya Formation, siltstone/sandstone, Tithonian Jurassic of Russian Federation
17 (Spicipalpia) Ptilocolepidae Palaeagapetus/Ptilocolepus Ptilocolepidae >89.8 201.3 logNormalPrior mean=”30.5” stdev=”31.0” offset=”89.8” Palaeagapetus furcilla New Jersey amber, Parlin sand pit; Turonian, Magothy Formation of NJ, USA.
18 (Spicipalpia) Hydroptilidae Alisotrichia/Celaenotrichia Hydroptilidae >13.82 201.3 logNormalPrior mean=”50.0” stdev=”52.8” offset=”13.82” Alisotrichia arizela Dominican amber, a Burdigalian/Langhian terrestrial amber in the Dominican Republic
19 (Spicipalpia) Hydroptilidae Ochrotrichia/Nothotrichia Hydroptilidae >33.9 201.3 logNormalPrior mean=”40.0” stdev=”50.05” offset=”33.9” Ochrotrichia umbra Rovno Amber, Klesov locality, Priabonian, Eocene of Ukraine
20 (Spicipalpia) Hydroptilidae Leucotrichia/Anchitrichia Hydroptilidae >13.82 201.3 logNormalPrior mean=”50.0” stdev=”52.8” offset=”13.82” Leucotrichia adela Dominican amber (USNM Brodzinsky Lopez-Pena coll) (Miocene to Miocene of Dominican Republic)
21 (Spicipalpia) Hydroptilidae Hydroptila/Oxyethira Hydroptilidae >47.8 201.3 logNormalPrior mean=”42.5” stdev=”42.45” offset=”47.8” Hydroptila phileos Cathedral Bluffs, a Bridgerian lacustrine (large shale) in the Green River Formation of Colorado.
22 (Spicipalpia) Hydroptilidae Agraylea / (Hydroptila, Oxyethira) Hydroptilidae >89.8 201.3 logNormalPrior mean=”30.5” stdev=”31.0” offset=”89.8” Agraylea (Nanoagraylea) cretaria, A. parva White Oaks Pit, Turonian delta plain amber/lignite in Raritan Formation of NJ, USA
23 (Spicipalpia) Glossosomatidae Glossosomatidae Glossosomatidae >145.0 201.3 logNormalPrior mean=”15.6” stdev=”15.55” offset=”145.0” Dajella tenera
24 (Spicipalpia) Hydrobiosidae Atopsyche/Moruya Hydrobiosidae >13.82 201.3 logNormalPrior mean=”50.0” stdev=”52.8” offset=”13.82” Atopsyche perlucida Dominican amber, a Burdigalian/Langhian terrestrial amber in the Dominican Republic
25 (Spicipalpia) Hydrobiosidae Isochorema/Apatanodes Hydrobiosidae >33.9 201.3 logNormalPrior mean=”40.0” stdev=”50.05” offset=”33.9” Isochorema secunda Baltic Amber, a Priabonian (Eocene) terrestrial amber in Russia
26 (Spicipalpia) Rhyacophilidae Rhyacophila/Himalopsyche (Stem) Rhyacophilidae >83.5 201.3 logNormalPrior mean=”33.25” stdev=”32.27” offset=”83.5” Rhyacophila antiquissima Taimyr amber, a Santonian terrestrial amber in the Kheta Formation of Russia
27 Integripalpia (Leptoceroidea) Ganonema/Phylloicus Calamoceratidae >125.0 174.1 logNormalPrior mean=”14.2” stdev=”13.3” offset=”125.0” Anisocalamus mixtus Chernovskie Kopi, Doronino Formation Barremian, Cretaceous of Russian Federation, lacustrine claystone.
28 Integripalpia (Leptoceroidea) Molannodes/Molanna Molannidae >55.8 174.1 logNormalPrior mean=”33.2” stdev=”32.5” offset=”55.8” Molanna derosa Sunchal lacustrine - mudstone & calcareous limestone, Jujuy, Argentina, Maíz Gordo Formation, Late/Upper Paleocene
29 Integripalpia (Leptoceroidea) Triplectides/Atriplectides Atriplectidae >33.9 174.1 logNormalPrior mean=”40.0” stdev=”38.2” offset=”33.9” Triplectides rudis, T. patens, T. pellucens, T. palaeoslavicus Baltic Amber, a Priabonian (Eocene) terrestrial amber in Russia
30 Integripalpia (Leptoceroidea) Marilia/Odontocerum Odontoceridae >33.9 174.1 logNormalPrior mean=”40.0” stdev=”38.2” offset=”33.9” Marilia ophthalmica Baltic Amber, a Priabonian (Eocene) terrestrial amber in Russia and Poland
31 Integripalpia (Leptoceroidea) Philorheithrus/Psilopsyche Philorheithridae >125.0 174.1 logNormalPrior mean=”14.2” stdev=”13.3” offset=”125.0” Palaeorheithrus sp., Palaeorheithrus sibiricus Chernovskie Kopi, Doronino Formation Barremian, Cretaceous of Russian Federation, lacustrine claystone.
32 Integripalpia (Leptoceroidea) Plectrotarsus/Oeconesidae Plectrotarsidae >140.2 174.1 logNormalPrior mean=”9.3” stdev=”9.4” offset=”140.2” Palaeotarsus desertus Durlston Bay, Late/Upper Berriasian (Cretaceous of England), lagoonal; lithified siliciclastic sediments
33 Integripalpia (Leptoceroidea) Leptoceridae Leptoceridae >113.0 174.1 logNormalPrior mean=”16.9” stdev=”16.9” offset=”113.0” Creterotesis coprolithica Zaz Formation, Baissa, Buryatia, Ruddian Federation. Ivanov 2006.
34 Integripalpia (Leptoceroidea) Leptocerus/Trichosetodes Leptoceridae >33.9 174.1 logNormalPrior mean=”40.0” stdev=”38.2” offset=”33.9” Leptocerus solifemella Rovno Amber, a Priabonian (Eocene) terrestrial amber in Ukraine.
35 Integripalpia (Leptoceroidea) Ceraclea/Brachysetodes Leptoceridae >33.9 174.1 logNormalPrior mean=”40.0” stdev=”38.2” offset=”33.9” Ceraclea sp. Rovno Amber, a Priabonian (Eocene) terrestrial amber in Ukraine.
36 Integripalpia (Sericostomatoidea) Beraeodes/(Beraea, Beraeomiya) Beraeidae >33.9 174.1 logNormalPrior mean=”40.0” stdev=”38.2” offset=”33.9” Beraeodes pectinatus, B. anglica, B. vectensis Priabonian lagoonal/shallow subtidal lime mudstone in Bouldnor Formation, UK & Baltic Amber in Russia & Ukraine
37 Integripalpia (Limnephiloidea) Phryganea/Phryganeinae Phryganeidae >33.9 174.1 logNormalPrior mean=”40.0” stdev=”38.2” offset=”33.9” Phryganea dubia, P. egregia, P. fossilis Baltic Amber, Berendt collection, which is in a Priabonian terrestrial amber in Poland
38 Integripalpia (Limnephiloidea) Phryganeidae Phryganeidae >93.5 174.1 logNormalPrior mean=”25.2” stdev=”21.1” offset=”93.5” Phryganea arenifera Kounic, which is in a Cenomanian terrestrial shale in the Peruc-Korycany Formation of the Czech Republic
39 Integripalpia (Limnephiloidea) Limnephilidae Limnephilidae >113.0 174.1 logNormalPrior mean=”16.9” stdev=”16.9” offset=”113.0” Indusia reisi Mt. Uskuk, Ondai Sair, Anda-Khuduk Formation, Aptian (Cretaceous of Mongolia), lacustrine; shale
40 Integripalpia (Limnephiloidea) Limnephilus/Hesperophylax Limnephilidae >46.2 174.1 logNormalPrior mean=”35.1” stdev=”35.5” offset=”46.2” Limnephilus eocenicus, (L. recultus: >15.97) Roan Mountain, Bridgerian lacustrine (large shale) in Green River Formation of Colorado, USA
41 Integripalpia (Limnephiloidea) Micrasema/Brachycentrus Brachycentridae >113.0 174.1 logNormalPrior mean=”16.9” stdev=”16.9” offset=”113.0” Baissoplectrum separatum Baissa, an Aptian lacustrine - large marl/siltstone in the Zaza Formation of Russia.
42 Integripalpia (Limnephiloidea) Lepidostoma/Theliopsyche Lepidostomatidae >125.45 174.1 logNormalPrior mean=”13.4” stdev=”13.5” offset=”125.45” Eucrunoecia ridicula Early/Lower Barremian, Upper Weald Clay Formation, Capel, Surrey, UK.
43 Integripalpia (Limnephiloidea) Goera/(Silo/Silonella) Goeridae >33.9 174.1 logNormalPrior mean=”40.0” stdev=”38.2” offset=”33.9” Goera gracilicornis, Silo brevicornis Baltic Amber, a Priabonian (Eocene) terrestrial amber in Russia

Discussion

According to Nicholson et al. (2015), amongst the family-level lineages, in Annulipalpia, the extant philopotamid lineage is represented confidently by a fossil from the Pliensbachi (J1, median age 186.3 Ma, with our estimated age greater than 174.1 Ma). Fossil families †Electralbertidae, †Protobaikalopsychidae and †Vitimotauliidae persisted during the Cretaceous. Estimated minimum ages for extant families Polycentropodidae, Dipseudopsidae, Ecnomidae, Psychomyiidae, Pseudoneureclipsidae, Hydropsychidae and Stenopsychidae were greater than 145.0, 125.5, 125.45, 113.0, 93.5, 46.2 and 33.9 Ma, respectively.

Again, according to Nicholson et al. (2015), in Integripalpia, the oldest lineage, dating from the Norian (T3, median age 222.6 Ma), is of †Necrotauliidae, a basal lineage of Integripalpia that survived to at least the Berriasian (K1, median age 142.85 Ma). Fossils of extinct families †Dysoneuridae, †Baissoferidae, †Burmapsychidae and †Cretapsychidae, †Taymyrelectronidae and †Yantarocentridae date from 173.6, 162.95, 105.8, 84.65 and 44.5 Ma, respectively. The oldest fossil of extant family Rhyacophilidae is from the Oxfordian (J3, median age 158.4 Ma., compared with our estimated age greater than 83.5 Ma). Similarly, the oldest fossils of Hydrobiosidae and Phryganeidae are from the Tithonian (J3, median age 148.15 Ma, compared with our estimated ages greater than 33.9 Ma and 93.5 Ma, respectively). Estimated minimum ages for other extant integripalpian families range from at least 145.0 Ma for Glossosomatidae to 33.9 Ma for Atriplectididae, Beraeidae, “Goeridae,” Hydrobiosidae and Odontoceridae. The similar estimated age of these five integripalpian families (and annulipalpian Stenopsychidae) is curious, inviting investigations about geological and ecological conditions that may have accelerated diversification about this time.

Ge et al. (2022) provided an alternative phylogeny to that shown in Fig. 1. It was based on mitochondrial genomes and notably places Hydroptilidae at the base of the Annulipalpia clade. Confirmation of this alternative awaits further supporting evidence.

Additional information about fossil caddisflies in Burmese amber was recently provided by W. Wichard (2023).

Conclusion

To serve as a basis for interpreting functional traits of caddisflies, Fig. 1 depicts not only our current understanding of relationships of extant and fossil caddisfly families, but also general understanding of their habitats, habits and trophic relationships, based mainly on the summaries by Holzenthal et al. (2007, 2015) and Cummins et al. (2019). A manuscript interpreting the evolution of these functional traits is in preparation.

Author Contributions

Conceptualisation: JAT, PBF, JCM. Literature review: JAT, PBF, JCM. Investigation: JAT, PBF, JCM. Writing-Original draft: JCM. Writing-Review/editing: JAT, PBF, JCM.

Conflicts of Interest

The authors declare no conflicts of interest. No other persons or entities had a role in the design of the study; in the collection, analyses or interpretation of the data; in the writing of the manuscript; or in the decision to publish the results.

Acknowledgements

We are grateful for helpful advice from R.W. Holzenthal.

References

  • Cummins KW, Wallace JR, Merritt RW, Wiggins GB, Morse JC, Holzenthal RW, Robertson DR, Rasmussen AK, Currie DC, Berg MB (2019) Table 19A: Summary of ecological and distributional data for Trichoptera (caddisflies). In: Merritt RW, Cummins KW, Berg MB (Eds) An Introduction to the Aquatic Insects of North America, Fifth Edition. Kendall Hunt Publishing Company, Dubuque, Iowa, 726–764.
  • Ge X, Peng L, Vogler AP, Morse JC, Yang L, Sun C, Wang B (2022) Massive gene rearrangements of mitochondrial genomes and implications for the phylogeny of Trichoptera (Insecta). Systematic Entomology 48: 278–295. https://doi.org/10.1111/syen.12575
  • Holzenthal RW, Blahnik RJ, Prather AL, Kjer KM (2007) Order Trichoptera Kirby, 1813 (Insecta), Caddisflies. In: Zhang Z, Shear WA (Eds) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa 1668: 639–698. https://doi.org/10.11646/zootaxa.1668.1.29
  • Holzenthal RW, Thomson RE, Rios-Touma B (2015) Order Trichoptera. In: Thorp JH, Rogers DC (Eds) Thorp and Covich’s Freshwater Invertebrates, 4th Edition, Volume 1: Ecology and General Biology. Elsevier, Amsterdam, etc., 965–1002. https://doi.org/10.1016/B978-0-12-385026-3.00038-3
  • Kjer KM, Thomas JA, Zhou X, Frandsen PB, Prendini E, Holzenthal RW (2016) Progress on the phylogeny of caddisflies. In: Vshivkova TS, Morse JC (Eds) Proceedings of the 14th International Symposium on Trichoptera, Vladivostok, Russia, 2–7 July 2012. Zoosymposia 10: 248–256. https://doi.org/10.11646/zoosymposia.10.1.23
  • Kopylov DS, Rasnitsyn AP, Aristov DS, Bashkuev AS, Bazhenova NV, Dmitriev VYu, Gorochov AV, Ignatov MS, Ivanov VD, Khramov AV, Legalov AA, Kukashevich ED, Mamontov YuS, Melnitsky SI, Ogłaza B, Ponomarenko AG, Prokin AA, Ryzhkova OV, Shmakov AS, Sinitshenkova ND, Solodovnikov AYu, Strelnikova OD, Sukacheva ID, Uliakhin AV, Vasilenko DV, Wegierek P, Yan EV, Zmarzły M (2020) The Khasurty Fossil Insect Lagerstätte. Paleontological Journal 54(11): 1221–1394. https://doi.org/10.1134/S0031030120110027
  • Malm T, Johanson KA, Wahlberg N (2013) The evolutionary history of Trichoptera (Insecta): A case of successful adaptation to life in water. Systematic Entomology 38: 459–473. https://doi.org/10.1111/syen.12016
  • Morse JC, Frandsen PB, Graf W, Thomas JA (2019) Diversity and ecosystem services of Trichoptera. In: Morse JC, Adler PH (Eds) Diversity and Ecosystem Services of Aquatic Insects. Insects 10: 125. https://doi.org/10.3390/insects10050125
  • Thomas JA, Frandsen PB, Prendini E, Zhou X, Holzenthal RW (2020) A multigene phylogeny and timeline for Trichoptera (Insecta). Systematic Entomology 45: 670–686. https://doi.org/10.1111/syen.12422

The paper is part of 17th International Symposium on Trichoptera, Lunz am See (Austria), 6–10 September 2021
login to comment